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Experimental data from a turbulent optical system are analyzed quantitatively. The system consists of a
nonlinear fiber ring resonator synchronously driven by a train of picosecond light pulses. Spatiotemporal
dynamics reshapes the pulses and generates intricate substructure; its complexity can be chosen through choice
of parameters. We extend standard procedures of time series analysis and show how a measure of the degree
of complexity can be retrieved from the data.@S1063-651X~96!04905-7#

PACS number~s!: 42.56.Sf, 42.65.Re

In recent years several approaches have been reported in
order to obtain quantitative analytical tools for the evaluation
of complexity in turbulent, i.e., spatiotemporally chaotic,
systems@1–4#. To test these ideas, it would be desirable to
have a system in which the number of participating spatial
degrees of freedom can be controlled. Theoretical studies on
arrays of coupled chaotic maps@1# do have this advantage,
plus the bonus of computational efficiency. However, they
seem to be somewhat remote from real world experimental
situations.

We have recently described@5# an experimental system,
from nonlinear optics, that can produce optical turbulence. A
remarkable feature is that this turbulence occurs in only one
spatial dimension. It was also shown@6# that the number of
spatial degrees of freedom in this system can be set as de-
sired. In this paper we will show that a controlled transition
from purely temporal to fully spatiotemporal dynamics can
be performed. We can thus set the ‘‘degree of complexity,’’
in a sense to be specified below.

We gathered experimental data under conditions corre-
sponding to different degrees of complexity, then subject
them to time series analysis. We demonstrate that it is pos-
sible to extract quantitative information on the degree of
complexity, even for the case of fully spatiotemporal dynam-
ics.

The experiment consists of a nonlinear optical resonator
formed by an optical fiber, the output light of which is fed
back to its input. The resonator is synchronously driven by a
train of picosecond laser pulses. Since a single-mode fiber is
used, any transverse degrees of freedom are ruled out. The
intensity-dependent index of refraction of the fiber, in com-
bination with its group velocity dispersion and the repetitive
interference at the input, gives rise to a rich dynamics. The
setup is shown schematically in Fig. 1. A brief description
will suffice here; further experimental details of the ring
resonator can be found in@5#.

As a light source we employ an additive pulse mode-
locked Nd:YAG~yttrium aluminum garnet! laser@7, 8# emit-
ting pulses of width t0'15 ps at a wavelength of
l51.32 mm with a repetition rate of 82.4 MHz. Alterna-
tively, a synchronously pumped NaCl:OH2 color center la-
ser with a pulse width oft0'1 ps atl51.45, . . . ,1.7 mm
at the same repetition rate is used. Different polarization-
maintaining fibers are employed in the experiment; their
length isL59.2 m throughout. Together with the different

wavelengths of the two lasers we have access to values of
group velocity dispersion fromb25225 ps2/km to
b25111 ps2/km in the fiber. The amount of dispersion is of
utmost importance here: it sets the correlation width in the
pulse,tcorr'Aub2uL, or in other words controls how fine the
pulse substructure can get@6#. We use the term ‘‘system
size’’ S to indicate the number of spatial elements, given by
total volume to correlation volume. In our one-dimensional
optical system, this reduces to the ratio of pulse width to
correlation width of the pulse substructure,S5t0 /tcorr. In
our experiment, the system size can be easily varied by the
proper selection of fiber dispersion and pulse duration.

The output of the nonlinear interferometer is monitored
by a fast photodiode. In addition, we detect the optical sec-
ond harmonic, generated by a nonlinear crystal, to discrimi-
nate signal contributions from dynamical processes at pulse
center from those in the wings~compare@5#!. Both detector
signals are digitized and stored by a digital storage oscillo-
scope. The sampling clock of this device is directly synchro-
nized with the optical pulse train of the mode-locked laser. A
third channel of the oscilloscope is used to monitor the pulse
train at the interferometer input. This enables us to reject
data sets in which any irregularities of the input, such as
relaxation oscillations of the laser, are apparent. Using this
setup we can record time series of pulse energies with
lengths up to 2 Mbytes if required.

The data thus acquired have a very good signal-to-noise
ratio; this was demonstrated through the observation of sub-
harmonic period 32 behavior@5, 9#. Due to the high repeti-
tion rate, we can acquire as many asn520 000 data points in
a mere millisecond. Thus the influence of thermal parameter
drift is expected to be of minor importance. Nevertheless, we
confirmed stationarity with the technique of recurrence plots
@10#.

FIG. 1. Experimental setup. ATT: variable attenuator; OD: op-
tical diode~Faraday rotator and polarizers!.
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Several procedures are known to detect nonlinear correla-
tions in measured time series. One of the most succesful of
these is an algorithm to compute the correlation dimension
originally put forward by Grassberger and Procaccia@11#
~GPA for short in this paper!. It makes use of an embedding
of the measured time series in an artificial phase space of
dimensionm, performs a statistical evaluation of distances
of point pairs in this embedding space, and returns a function
D2(m). If D2(m) converges, i.e., becomes independent of
m at least for largem, that value is usually considered as the
estimate for the correlation dimension.

However, there are several subtle problems with this al-
gorithm: It can tolerate only a very limited amount of noise
in the data, and it requires very long time series. In particu-
lar, the requirements on sample size grow exponentially and
thus get excessive and impractical for anything higher in
dimension than the simplest chaotic attractors. Basing an op-
timistic estimate on@12#, one finds that the GPA is limited to
something likeD2,12 for n5106. On the other hand, 106

data points are an upper limit of what is practical because
computing time scales in proportion ton2 and thus gets ex-
cessive: Using a widespread implementation@13# on a state-
of-the-art work station an analysis of a data set with that
sample size might easily exceed a CPU month.

Even if one has a sufficient number of data points the
results of the GPA may still be ambiguous. The algorithm is
sensitive to all kinds of correlations, and will also react to
linear correlations; this may create the illusion of determin-
istic behavior in what really is colored noise. It is therefore
of utmost importance to safeguard against such artifacts. It
was pointed out in@14# that a comparison with so-called
surrogate data, which have identical linear correlations as the
measured data, allows the detection of determinism even in
the case of noise-contaminated data. These data sets can be
regarded as a stochastic rearrangement, or permutation, of
the original data set. In this publication we use an algorithm
that creates surrogates that have the identical histogram and
very nearly the same power spectrum as the original@14#.

Both original and a number of surrogate data sets are
subject to GPA. This results inD2

(orig) and the average and
the standard deviation for the surrogates,^D2

(surr)& and
s (surr), respectively. The ‘‘significance’’S5(^D2

(surr)&2

D2
(orig))/s (surr) provides a measure of the difference between

original and surrogates. A high value of the significance con-
firms the deterministic origin of the observed dynamics
whereas for smallS the deterministic origin of the data set
should be rejected even in the case of convergence. This
method was used to decide on the deterministic character of
observed dynamics on many occasions@14,15#. ~We note in
passing that the generation of uncorrelated random numbers
for surrogate generation is not trivial; here we use the sub-
routineRAN4 published in@16#.!

We first consider experimental data taken at strong
anomalous dispersion ofb25223 ps2/km and with a rela-
tively short pulse duration oft051.2 ps. Figure 2 shows the
result of the GPA analysis based on 16 384 data points. For
the original, there is excellent convergenceD2→2 with in-
creasing embedding dimension. At the same time, the corre-
sponding surrogate data diverge, withS reaching values as
high as 30. It is therefore reasonable to conclude that the

observed behavior is due to determinism in the data and not
due to an artifact of the GPA.

Next, let us consider data taken with much wider pulses
(t0515 ps! and at a smaller value of~normal! dispersion
(b257.4 ps2/km!. Under these conditions we find no con-
vergence of the GPA but nevertheless values forS that range
between 3 and 5.

We therefore attempt a procedure designed to improve the
convergence behavior that was described in@4#. Since in a
high-dimensional embedding space most data points lie close
to the surface of the attractor~if it exists!, the number of
point pairs detected comes out systematically low. This can
be corrected by using an analytic expression for the correla-
tion sum for random numbers distributed in embedding
space. Details can be found in@4#. We find that the correc-
tion seems to shift the limit set by the sample size to higher
values: In this example, the dimension estimates are clamped
at'11, which is just the value expected from@12#; with the
correction the maximum is closer to 20. The correction is
thus slightly helpful, and we will employ it in the remainder
of this section.

It has also been used for Fig. 3. Still, both results from
original and surrogates fail to converge and go up to values
set by the sample size limit~left panel!. However, the rate of
divergence is significantly different for original and surro-
gate data (S'3.5). Remarkably, the slope ofD2

(orig)(m) is
nearly constant. To better demonstrate this, the derivative
d5]D2 /]m is plotted in the right panel of Fig. 3.

If we further reduce dispersion tob250.25 ps2/km ~Fig.
4!, the difference between the divergence coefficient of the
original and the surrogates is smaller but still statistically
significant. Note, however, that now the sloped'0.66 is
steeper than before.

The failure of the GPA to converge indicates that addi-
tional degrees of freedom have been activated now. These
additional degrees of freedom result from substructure for-
mation in the pulses due to the much larger system sizeS. It
has been argued@2,4,17# that in the case of spatially ex-
tended systems the attractor dimension is an extensive quan-
tity; dimension divided by ‘‘system size’’N ~defined in@4#
as the number of Lyapunov exponents; do not confuse with

FIG. 2. Result of GPA analysis on a data set representing low-
dimensional chaos. Left: Dimension estimate vs embedding dimen-
sion. Right: Significance~see text! vs embedding dimension. Con-
ditions weret050.9 ps andb25223 ps2/km.
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S defined above! would then give the dimension density,
which would be size independent. SinceN is also not known
a priori, the dimension densityr can be estimated as
r5D2 /m @4#.

Formally, we follow this argument when we read the
sloped as above. Nevertheless, we emphasize that the physi-
cal situation is quite different here. In@4#, embedding space
is spanned either by time-shifted coordinates at a single spa-
tial point (xt

(1) ,x(t1t)
(1) , . . . ,x(t1(m21)t)

(1) ), or by spatially
shifted coordinates at one instant in time
(xt

(1) ,xt
(2) , . . . ,xt

(m)). Here, we use time-shifted ensemble
average values for embedding:Pt ,Pt1t , . . . ,Pt1(m21)t
wherePt1 i t is the total energy of thei th pulse, i.e., its power
integrated over its duration. This corresponds to a summation
over the spatial index. Keeping this distinction in mind, we
prefer to calld as used here the ‘‘divergence coefficient.’’

Evaluation of several experimental data sets, taken for
differing values of dispersion, reveals thatd depends on the
value of dispersion as well as on the input pulse width. It is
highest for low dispersion and broad pulses. This is illus-
trated by Figs. 3 and 4.

Obviously, the GPA enhanced with surrogate analysis and
the divergence coefficient is able to reproduce useful infor-

mation on the degree of complexity even in the case of a
fairly high number of degrees of freedom.d can serve as a
measure of complexity in the sense that it ranges from 0 to 1
when the number of spatial elements ranges from one to
infinity. It is therefore a useful quantity to distinguish differ-
ent degrees of turbulence and to measure complexity.

The system sizeS ~again, not to be confused withN as
used in@4#! plays a role analogous to the Fresnel number in
diffraction. For the data shown in Fig. 2 we estimateS'2,
whereas for those in Fig. 3S'50, and in Fig. 4S'300.
While the latter value requires a downward correction to
'200 once third-order dispersion is taken into account, the
fact remains remarkable that determinism still can be traced
from measured data.

We have reported on time series analysis on data from a
system with a variable number of degrees of freedom. Our
results indicate that even in the case of large~geometric!
system sizes and in the presence of additional noise and pa-
rameter drift, as is typical for real experiments, traces of
determinism in the data can well be detected from recordings
of less than 20 000 data points. In several cases, we were
able to obtain quantitative information from experimental
data sets taken atS>100.

Our method is an extension of the well-known GPA,
which draws on surrogate analysis to safeguard against arti-
facts, on a correction to improve statistics at high embedding
dimensions, and on concepts originally developed for the
calculation of dimension density.

We consider it slightly surprising that the method is able
to reveal this information in spite of the fact that we use
ensemble averages, rather than pointwise measurements.
While it has been shown mathematically@18# that a wide
variety of transformations can be performed on measured
data without topological distortion of the reconstructed phase
space, the theorems involved require an embedding dimen-
sion at least twice the box-counting dimension of the attrac-
tor; we are in no way close to satisfying this requirement.
Nevertheless, and in spite of all other imperfections that are
characteristic for real world experimental data, the method
produces useful information.

With the enhanced techniques described here we solve a
long-standing problem that was first addressed by Ikeda
theoretically@19# and Nakatsukaet al. experimentally@20#:
To show with objective procedures from experimental data
that there is chaotic~in fact, turbulent! dynamics in a non-
linear ring resonator.
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FIG. 3. Result of GPA analysis on a data set representing optical
turbulence. Left: Dimension estimate vs embedding dimension;
Middle: Significance~see text! vs embedding dimension; Right: di-
vergence coefficient vs embedding dimension. Conditions were
t0515 ps andb257.4 ps2/km.

FIG. 4. Similar to Fig. 3, except forb250.25 ps2/km.
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